Environmental Sciences Europe (Jan 2019)
Novel brominated flame retardants in house dust from Shanghai, China: levels, temporal variation, and human exposure
Abstract
Abstract Background Novel brominated flame retardants (NBFRs) have been increasingly used as alternatives to legacy BFRs (e.g., PBDEs and HBCDs) in consumer products, but are liable to emigrate and contaminate indoor dust. In this study, a total of 154 house dust samples including floor dust (FD) and elevated surface dust (ESD) were collected in the biggest metropolitan area (Shanghai) of East China in 2016. Limited information about temporal variation of NBFRs indoors is available, while the period of sampling is influential in human exposure estimates. Levels, temporal variation, and human exposure of seven target NBFRs such as decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EHTBB), and bis(2-ethylhexyl) tetrabromophthalate (BEHTEBP) were investigated in indoor house dust. Results Concentrations of ∑7NBFRs ranged from 19.11 to 3099 ng/g with a geomean of 295.1 ng/g in FD, and from 34.74 to 404.6 ng/g with a geomean of 117.9 ng/g in ESD. The geomeans of DBDPE were 219.6 ng/g in FD and 76.89 ng/g in ESD, accounting for 90.5% and 80.5% of ∑7NBFRs. Levels of EHTBB, BTBPE, and DBDPE in FD exceeded significantly those in ESD. The temporal variation in ∑7NBFRs in FD was ranked as summer > winter > autumn > spring. The daily exposure doses (DEDs) of ∑7NBFRs via dust ingestion decreased as: infants > toddlers > children > teenagers > adults. Infants showed the highest DED in FD, 9.1 ng/kg bw/day. Conclusions DBDPE clearly dominated the NBFRs in both FD and ESD, but the concentrations of DBDPE in this study were generally moderate compared with the other international studies. Dust ingestion was the major pathway of human exposure to NBFRs indoors. About eightfold difference in exposure estimates between infants and adults showed that infants faced elevated exposure risks in FD. This study highlighted the necessity to estimate human exposure of NBFRs for different age groups using FD and ESD, respectively.
Keywords