Photonics (Jan 2017)

Generation and Detection of Continuous Variable Quantum Vortex States via Compact Photonic Devices

  • David Barral,
  • Daniel Balado,
  • Jesús Liñares

DOI
https://doi.org/10.3390/photonics4010002
Journal volume & issue
Vol. 4, no. 1
p. 2

Abstract

Read online

A quantum photonic circuit with the ability to produce continuous variable quantum vortex states is proposed. This device produces two single-mode squeezed states which go through a Mach-Zehnder interferometer where photons are subtracted by means of weakly coupled directional couplers towards ancillary waveguides. The detection of a number of photons in these modes heralds the production of a quantum vortex. Likewise, a measurement system of the order and handedness of quantum vortices is introduced and the performance of both devices is analyzed in a realistic scenario by means of the Wigner function. These devices open the possibility of using the quantum vortices as carriers of quantum information.

Keywords