Green Energy & Environment (Oct 2024)
Recent advances in phenazine-linked porous catalysts toward photo/electrocatalytic applications and mechanism
Abstract
In recent years, porous organic catalysts have been developed and become research hotspots in photo/electrocatalysis due to their inherent pores, high specific surface area, chemical and thermal stability, and diverse functional building blocks. Phenazine-linked organic catalysts, exhibited excellent conjugation, electrical conductivity, chemical, and thermal stability, could bring in N atoms with specific numbers and positions to regulate electron levels, anchor metals, and absorb near-infrared light, which expands solar energy utilization. These advantages of the phenazine-linked catalysts attracted our group and numerous researchers to conduct experimental and computational work on photo/electrocatalytic applications and mechanisms. This review summarizes the recent significant research progress, synthesis methods, photo/electrocatalytic performance, and applications of relative phenazine-linked catalysts. Furthermore, the photo/electrocatalytic mechanism was systematized and summarized by combining experiments and density functional theory calculations simultaneously.