Transplantation Direct (Jun 2023)
MHC Class I Masking to Prevent AMR in a Porcine Kidney Transplantation Model in Alloimmunized Recipients
Abstract
Background:. Presensitized patients awaiting a kidney transplant have a lower graft survival and a longer waiting time because of the limited number of potential donors and the higher risk of antibody-mediated rejection (AMR), particularly in the early posttransplant period, because of preformed donor-specific antibodies binding major histocompatibility complex (MHC) molecules expressed by the graft endothelium followed by the activation of the complement. Advances in kidney preservation techniques allow the development of ex vivo treatment of transplants. We hypothesized that masking MHC ex vivo before transplantation could help to prevent early AMR in presensitized recipients. We evaluated a strategy of MHC I masking by an antibody during ex vivo organ perfusion in a porcine model of kidney transplantation in alloimmunized recipients. Methods:. Through the in vitro calcein-release assay and flow cytometry, we evaluated the protective effect of a monoclonal anti–swine leukocyte antigen class I antibody (clone JM1E3) against alloreactive IgG complement-dependent cytotoxicity toward donor endothelial cells. Kidneys perfused ex vivo with JM1E3 during hypothermic machine perfusion were transplanted to alloimmunized recipients. Results:. In vitro incubation of endothelial cells with JM1E3 decreased alloreactive IgG cytotoxicity (mean complement-dependent cytotoxicity index [% of control condition] with 1 µg/mL 74.13% ± 35.26 [calcein assay] and 66.88% ± 33.46 [cytometry]), with high interindividual variability. After transplantation, acute AMR occurred in all recipients on day 1, with signs of complement activation (C5b-9 staining) as soon as 1 h after transplantation, despite effective JM1E3 binding on graft endothelium. Conclusions:. Despite a partial protective effect of swine leukocyte antigen I masking with JM1E3 in vitro, ex vivo perfusion of the kidney with JM1E3 before transplantation was not sufficient alone at preventing or delaying AMR in highly sensitized recipients.