Lubricants (May 2024)

AsdinNorm: A Single-Source Domain Generalization Method for the Remaining Useful Life Prediction of Bearings

  • Juan Xu,
  • Bin Ma,
  • Weiwei Chen,
  • Chengwei Shan

DOI
https://doi.org/10.3390/lubricants12050175
Journal volume & issue
Vol. 12, no. 5
p. 175

Abstract

Read online

The remaining useful life (RUL) of bearings is vital for the manipulation and maintenance of industrial machines. The existing domain adaptive methods have achieved major achievements in predicting RUL to tackle the problem of data distribution discrepancy between training and testing sets. However, they are powerless when the target bearing data are not available or unknown for model training. To address this issue, we propose a single-source domain generalization method for RUL prediction of unknown bearings, termed as the adaptive stage division and parallel reversible instance normalization model. First, we develop the instance normalization of the vibration data from bearings to increase data distribution diversity. Then, we propose an adaptive threshold-based degradation point identification method to divide the healthy and degradation stages of the run-to-failure vibration data. Next, the data from degradation stages are selected as training sets to facilitate the RUL prediction of the model. Finally, we combine instance normalization and instance denormalization of the bearing data into a unified GRU-based RUL prediction network for the purpose of leveraging the distribution bias in instance normalization and improving the generalization performance of the model. We use two public datasets to verify the proposed method. The experimental results demonstrate that, in the IEEE PHM Challenge 2012 dataset experiments, the prediction accuracy of our model with the average RMSE value is 1.44, which is 11% superior to that of the suboptimal comparison model (Transformer model). It proves that our model trained on one-bearing data achieves state-of-the-art performance in terms of prediction accuracy on multiple bearings.

Keywords