Journal of Translational Medicine (Oct 2008)

Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells

  • Mounts William M,
  • Wang Shuguang,
  • Savio Dawn,
  • Nambi Ponnal,
  • Liu Qiang-Yuan,
  • Halpern Anita R,
  • Feingold Irene,
  • Chen Liang,
  • Basso Michael D,
  • Kornaga Tad,
  • Evans Mark J,
  • Quinet Elaine M,
  • Arai Maya,
  • DiBlasio-Smith Elizabeth A,
  • Isler Jennifer A,
  • Slager Anna M,
  • Burczynski Michael E,
  • Dorner Andrew J,
  • LaVallie Edward R

DOI
https://doi.org/10.1186/1479-5876-6-59
Journal volume & issue
Vol. 6, no. 1
p. 59

Abstract

Read online

Abstract Background LXRs (Liver X Receptor α and β) are nuclear receptors that act as ligand-activated transcription factors. LXR activation causes upregulation of genes involved in reverse cholesterol transport (RCT), including ABCA1 and ABCG1 transporters, in macrophage and intestine. Anti-atherosclerotic effects of synthetic LXR agonists in murine models suggest clinical utility for such compounds. Objective Blood markers of LXR agonist exposure/activity were sought to support clinical development of novel synthetic LXR modulators. Methods Transcript levels of LXR target genes ABCA1 and ABCG1 were measured using quantitative reverse transcriptase/polymerase chain reaction assays (qRT-PCR) in peripheral blood from mice and rats (following a single oral dose) and monkeys (following 7 daily oral doses) of synthetic LXR agonists. LXRα, LXRβ, ABCA1, and ABCG1 mRNA were measured by qRT-PCR in human peripheral blood mononuclear cells (PBMC), monocytes, T- and B-cells treated ex vivo with WAY-252623 (LXR-623), and protein levels in human PBMC were measured by Western blotting. ABCA1/G1 transcript levels in whole-blood RNA were measured using analytically validated assays in human subjects participating in a Phase 1 SAD (Single Ascending Dose) clinical study of LXR-623. Results A single oral dose of LXR agonists induced ABCA1 and ABCG1 transcription in rodent peripheral blood in a dose- and time-dependent manner. Induction of gene expression in rat peripheral blood correlated with spleen expression, suggesting LXR gene regulation in blood has the potential to function as a marker of tissue gene regulation. Transcriptional response to LXR agonist was confirmed in primates, where peripheral blood ABCA1 and ABCG1 levels increased in a dose-dependent manner following oral treatment with LXR-623. Human PBMC, monocytes, T- and B cells all expressed both LXRα and LXRβ, and all cell types significantly increased ABCA1 and ABCG1 expression upon ex vivo LXR-623 treatment. Peripheral blood from a representative human subject receiving a single oral dose of LXR-623 showed significant time-dependent increases in ABCA1 and ABCG1 transcription. Conclusion Peripheral blood cells express LXRα and LXRβ, and respond to LXR agonist treatment by time- and dose-dependently inducing LXR target genes. Transcript levels of LXR target genes in peripheral blood are relevant and useful biological indicators for clinical development of synthetic LXR modulators.