Acta Polytechnica (Mar 2023)
Linearisation of a second-order nonlinear ordinary differential equation
Abstract
We analyse nonlinear second-order differential equations in terms of algebraic properties by reducing a nonlinear partial differential equation to a nonlinear second-order ordinary differential equation via the point symmetry f(v)∂v. The eight Lie point symmetries obtained for the second-order ordinary differential equation is of maximal number and a representation of the sl(3,R) algebra. We extend this analysis to a more general nonlinear second-order differential equation and we obtain similar interesting algebraic properties.
Keywords