EPJ Web of Conferences (Jan 2023)

Origin of the Proton Mass

  • Roberts Craig D.

DOI
https://doi.org/10.1051/epjconf/202328201006
Journal volume & issue
Vol. 282
p. 01006

Abstract

Read online

Atomic nuclei lie at the core of everything visible; and at the first level of approximation, their atomic weights are simply the sum of the masses of all the neutrons and protons (nucleons) they contain. Each nucleon has a mass mN ≈ 1 GeV ≈ 2000-times the electron mass. The Higgs boson – discovered at the large hadron collider in 2012, a decade ago – produces the latter, but what generates the nucleon mass? This is a pivotal question. The answer is widely supposed to lie within quantum chromodynamics (QCD), the strong-interaction piece of the Standard Model. Yet, it is far from obvious. In fact, removing Higgs-boson couplings into QCD, one arrives at a scale invariant theory, which, classically, can’t support any masses at all. This contribution sketches forty years of developments in QCD, which suggest a solution to the puzzle, and highlight some of the experiments that can validate the picture.