Metals (Jul 2016)
Review of Electromagnetic-Based Crack Sensors for Metallic Materials (Recent Research and Future Perspectives)
Abstract
Evaluation and non-destructive identification of stress-induced cracks or failures in metals is a vital problem in many sensitive environments, including transportation (steel railway tracks, bridges, car wheels, etc.), power plants (steam generator tubing, etc.) and aerospace transportation (landing gear, aircraft fuselages, etc.). There are many traditional non-destructive detection and evaluation techniques; recently, near-field millimeter waves and microwave methods have shown incredible promise for augmenting currently available non-destructive techniques. This article serves as a review of developments made until now on this topic; it provides an overview of microwave scanning techniques for crack detection. This article summarizes the abilities of these methods to identify and evaluate cracks (including describing their different physical properties). These methods include applying filters based on dual-behavior resonators (DBRs), using complementary split-ring resonators (CSRRs) for the perturbation of electric fields, using waveguide probe-loaded CSRRs and using a substrate-integrated-waveguide (SIW) cavity for the detection of sub-millimeter surface and subsurface cracks.
Keywords