Molecular Therapy: Nucleic Acids (Dec 2023)
Evaluation of guide-free Cas9-induced genomic damage and transcriptome changes in pig embryos
- Weikai Ge,
- Xiaozhu Zhao,
- Shixue Gou,
- Qin Jin,
- Fangbing Chen,
- Zhen Ouyang,
- Chengdan Lai,
- Tao Cui,
- Baoyi Mai,
- Sijia Lu,
- Kexin Zhong,
- Yanhui Liang,
- Tao Chen,
- Han Wu,
- Nan Li,
- Yinghua Ye,
- Liangxue Lai,
- Kepin Wang
Affiliations
- Weikai Ge
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
- Xiaozhu Zhao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
- Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Qin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
- Zhen Ouyang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
- Chengdan Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
- Tao Cui
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Baoyi Mai
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Sijia Lu
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Kexin Zhong
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Tao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
- Han Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Nan Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Yinghua Ye
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China
- Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China; Corresponding author: Liangxue Lai, China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou 510530, China; Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya 572000, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China; Corresponding author: Kepin Wang, China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
- Journal volume & issue
-
Vol. 34
p. 102035
Abstract
Cas9 protein without sgRNAs can induce genomic damage at the cellular level in vitro. However, whether the detrimental effects occur in embryos after Cas9 treatment remains unknown. Here, using pig embryos as subjects, we observed that Cas9 protein transcribed from injected Cas9 mRNA can persist until at least the blastocyst stage. Cas9 protein alone can induce genome damage in preimplantation embryos, represented by the increased number of phosphorylated histone H2AX foci on the chromatin fiber, which led to apoptosis and decreased cell number of blastocysts. In addition, single-blastocyst RNA sequencing confirmed that Cas9 protein without sgRNAs can cause changes in the blastocyst transcriptome, depressing embryo development signal pathways, such as cell cycle, metabolism, and cellular communication-related signal pathways, while activating apoptosis and necroptosis signal pathways, which together resulted in impaired preimplantation embryonic development. These results indicated that attention should be given to the detrimental effects caused by the Cas9 protein when using CRISPR-Cas9 for germline genome editing, especially for the targeted correction of human pathological mutations using germline gene therapy.