Dianxin kexue (Nov 2019)
Review of image classification based on deep learning
Abstract
In recent years,deep learning performed superior in the field of computer vision to traditional machine learning technology.Indeed,image classification issue drew great attention as a prominent research topic.For traditional image classification method,huge volume of image data was of difficulty to process and the requirements for the operation accuracy and speed of image classification could not be met.However,deep learning-based image classification method broke through the bottleneck and became the mainstream method to finish these classification tasks.The research significance and current development status of image classification was introduced in detail.Also,besides the structure,advantages and limitations of the convolutional neural networks,the most important deep learning methods,such as auto-encoders,deep belief networks and deep Boltzmann machines image classification were concretely analyzed.Furthermore,the differences and performance on common datasets of these methods were compared and analyzed.In the end,the shortcomings of deep learning methods in the field of image classification and the possible future research directions were discussed.