International Journal of Molecular Sciences (Oct 2023)

Efficacy of Mesenchymal-Stromal-Cell-Derived Extracellular Vesicles in Ameliorating Cisplatin Nephrotoxicity, as Modeled Using Three-Dimensional, Gravity-Driven, Two-Layer Tubule-on-a-Chip (3D-MOTIVE Chip)

  • Eun-Jeong Kwon,
  • Seong-Hye Hwang,
  • Seungwan Seo,
  • Jaesung Park,
  • Seokwoo Park,
  • Sejoong Kim

DOI
https://doi.org/10.3390/ijms242115726
Journal volume & issue
Vol. 24, no. 21
p. 15726

Abstract

Read online

Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) are known to have a therapeutic effect on nephrotoxicity. As animal models require significant time and resources to evaluate drug effects, there is a need for a new experimental technique that can accurately predict drug effects in humans. We evaluated the therapeutic effect of MSC-derived EVs in cisplatin nephrotoxicity using a three-dimensional, gravity-driven, two-layer tubule-on-a-chip (3D-MOTIVE chip). In the 3D-MOTIVE chip, 10 μM cisplatin decreased the number of attached cells compared to the vehicle. Conversely, annexin V and reactive oxygen species (ROS) were increased. Cell viability was increased 2.8-fold and 2.5-fold after treatment with EVs at 4 and 8 µg/mL, respectively, compared to the cisplatin-induced nephrotoxicity group. Cell attachment was increased 2.25-fold by treatment with 4 µg/mL EVs and 2.02-fold by 8 µg/mL EVs. Annexin V and ROS levels were decreased compared to those in the cisplatin-induced nephrotoxicity group. There were no significant differences in annexin V and ROS levels according to EV concentration. In sum, we created a cisplatin-induced nephrotoxicity model on a 3D-MOTIVE chip and found that MSC-derived EVs could restore cell viability. Thus, MSC-derived EVs may have the potential to ameliorate cisplatin-induced nephrotoxicity.

Keywords