Atmosphere (Apr 2025)
A Multi-Year Investigation of Thunderstorm Activity at Istanbul International Airport Using Atmospheric Stability Indices
Abstract
Thunderstorms are weather phenomena that comprise thunder and lightning. They typically result in heavy precipitation, including rain, snow, and hail. Thunderstorms have adverse effects on flight at both the ground and the upper levels of the troposphere. The characteristics of the thunderstorm of Istanbul International Airport (International Civil Aviation Organization (ICAO) code: LTFM) have been investigated because it is currently one of the busiest airports in Europe and the seventh-busiest airport in the world. Geopotential height (m), temperature (°C), dewpoint temperature (°C), relative humidity (%), mixing ratio (g kg−1), wind direction (°), and wind speed (knots) data for the ground level and upper levels of the İstanbul radiosonde station were obtained from the Turkish State Meteorological Service (TSMS) for 29 October 2018 and 1 January 2023. Surface data were regularly collected by the automatic weather stations near the runway and the upper-level data were collected by the radiosonde system located in the Kartal district of İstanbul. Thunderstorm statistics, stability indices, and meteorological variables at the upper levels were evaluated for this period. Thunderstorms were observed to be more frequent during the summer, with a total of 51 events. June had the highest number of thunderstorm events with a total of 32. This averages eight events per year. A total of 72.22% occurred during trough and cold front transitions. The K index and total totals index represented the thunderstorm events better than other stability indices. In total, 75% of the thunderstorm days were represented by these two stability indices. The results are similar to the covering of this area: the convective available potential energy (CAPE) values which are commonly used for atmospheric instability are low during thunderstorm events, and the K and total totals indices are better represented for thunderstorm events. This study investigates thunderstorm events at the LTFM, providing critical insights into aviation safety and operational efficiency. The research aims to improve flight planning, reduce weather-related disruptions, and increase safety and also serves as a reference for airports with similar climatic conditions.
Keywords