International Journal of Molecular Sciences (Jun 2023)

NIH/3T3 Fibroblasts Selectively Activate T Cells Specific for Posttranslationally Modified Collagen Type II

  • Balik Dzhambazov,
  • Tsvetelina Batsalova,
  • Patrick Merky,
  • Franziska Lange,
  • Rikard Holmdahl

DOI
https://doi.org/10.3390/ijms241310811
Journal volume & issue
Vol. 24, no. 13
p. 10811

Abstract

Read online

It has been shown that synovial fibroblasts (SF) play a key role in the initiation of inflammation and joint destruction, leading to arthritis progression. Fibroblasts may express major histocompatibility complex class II region (MHCII) molecules, and thus, they could be able to process and present antigens to immunocompetent cells. Here we examine whether different types of fibroblasts (synovial, dermal, and thymic murine fibroblasts, destructive LS48 fibroblasts, and noninvasive NIH/3T3 fibroblasts) may be involved in the initiation of rheumatoid arthritis (RA) pathogenesis and can process and present type II collagen (COL2)—an autoantigen associated with RA. Using a panel of MHCII/Aq-restricted T-cell hybridoma lines that specifically recognize an immunodominant COL2 epitope (COL2259–273), we found that NIH/3T3 fibroblasts activate several T-cell clones that recognize the posttranslationally glycosylated or hydroxylated COL2259–273 epitope. The HCQ.3 hybridoma, which is specific for the glycosylated immunodominant COL2 epitope 259–273 (Gal264), showed the strongest response. Interestingly, NIH/3T3 cells, but not destructive LS48 fibroblasts, synovial, dermal, or thymic fibroblasts, were able to stimulate the HCQ.3 hybridoma and other COL2-specific T-cell hybridomas. Our experiments revealed that NIH/3T3 fibroblasts are able to activate COL2-specific T-cell hybridomas even in the absence of COL2 or a posttranslationally modified COL2 peptide. The mechanism of this unusual activation is contact-dependent and involves the T-cell receptor (TCR) complex.

Keywords