Radiation Oncology (Sep 2018)

Reduction in low-dose to normal tissue with the addition of deep inspiration breath hold (DIBH) to volumetric modulated arc therapy (VMAT) in breast cancer patients with implant reconstruction receiving regional nodal irradiation

  • Vishruta A. Dumane,
  • Kitwadee Saksornchai,
  • Ying Zhou,
  • Linda Hong,
  • Simon Powell,
  • Alice Y. Ho

DOI
https://doi.org/10.1186/s13014-018-1132-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background Despite dosimetric benefits of volumetric modulated arc therapy (VMAT) in breast cancer patients with implant reconstruction receiving regional nodal irradiation (RNI), low dose to the thoracic structures remains a concern. Our goal was to report dosimetric effects of adding deep inspiration breath hold (DIBH) to VMAT in left-sided breast cancer patients with tissue expander (TE)/permanent implant (PI) reconstruction receiving RNI. Methods Ten consecutive breast cancer patients with unilateral or bilateral TE/PI reconstruction who were treated with a combination of VMAT and DIBH to the left reconstructed chest wall and regional nodes were prospectively identified. Free breathing (FB) and DIBH CT scans were acquired for each patient. VMAT plans for the same arc geometry were compared for FB versus DIBH. Prescription dose was 50 Gy in 25 fractions. Dosimetric differences were tested for statistical significance. Results For comparable coverage and target dose homogeneity, the mean dose to the heart reduced on average by 2.9 Gy (8.2 to 5.3 Gy), with the addition of DIBH (p < 0.05). The maximum dose to the left anterior descending (LAD) artery was reduced by 9.9 Gy (p < 0.05), which related closely to the reduction in the maximum heart dose (9.4 Gy). V05 Gy to the heart, ipsilateral lung, contralateral lung and total lung (p < 0.05) decreased on average by 29.6%, 5.8%, 15.4% and 10.8% respectively. No significant differences were seen in the ipsilateral lung V20 Gy or mean dose as well as in the mean contralateral breast/implant dose. However, V04 Gy and V03 Gy of the contralateral breast/implant were respectively reduced by 13.2% and 18.3% using DIBH (p < 0.05). Conclusion Combination of VMAT and DIBH showed significant dosimetric gains for low dose to the heart, lungs and contralateral breast/implant. Not surprisingly, the mean and maximum dose to the heart and to the LAD were also reduced. DIBH should be considered with the use of VMAT in breast cancer patients with implant reconstructions receiving RNI.

Keywords