C (Apr 2023)

Thermochemistry of the Smallest Hyperbolic Paraboloid Hydrocarbon: A High-Level Quantum Chemical Perspective

  • Amir Karton

DOI
https://doi.org/10.3390/c9020041
Journal volume & issue
Vol. 9, no. 2
p. 41

Abstract

Read online

[5.5.5.5]hexaene is a [12]annulene ring with a symmetrically bound carbon atom in its center. This is the smallest hydrocarbon with a hyperbolic paraboloid shape. [5.5.5.5]hexaene and related hydrocarbons are important building blocks in organic and materials chemistry. For example, penta-graphene—a puckered 2D allotrope of carbon—is comprised of similar repeating subunits. Here, we investigate the thermochemical and kinetic properties of [5.5.5.5]hexaene at the CCSD(T) level by means of the G4 thermochemical protocol. We find that this system is energetically stable relative to its isomeric forms. For example, isomers containing a phenyl ring with one or more acetylenic side chains are higher in energy by ∆H298 = 17.5–51.4 kJ mol−1. [5.5.5.5]hexaene can undergo skeletal inversion via a completely planar transition structure; however, the activation energy for this process is ∆H‡298 = 249.2 kJ mol−1 at the G4 level. This demonstrates the high configurational stability of [5.5.5.5]hexaene towards skeletal inversion. [5.5.5.5]hexaene can also undergo a π-bond shift reaction which proceeds via a relatively low-lying transition structure with an activation energy of ∆H‡298 = 67.6 kJ mol−1. Therefore, this process is expected to proceed rapidly at room temperature.

Keywords