Applied Sciences (Dec 2024)

Fundamental Thermodynamic Aspects for the Effective Dispersion of Carbon Nanotubes and Improve Performance Grade of Bitumen

  • Azariy Lapidus,
  • Dmitriy Topchiy,
  • Svetlana Obukhova

DOI
https://doi.org/10.3390/app142311271
Journal volume & issue
Vol. 14, no. 23
p. 11271

Abstract

Read online

The application of carbon nanotubes to enhance bitumen properties is relevant due to the need to increase the durability of asphalt concrete pavements and reduce maintenance costs. Key areas requiring further study include the processes during ultrasonic dispersion, the selection of the optimal medium, and the stability of the resulting dispersions. This study examines dispersions containing multi-walled carbon nanotubes (MWCNTs) Taunit M (from 5·10−4 to 5·10−2%) and various hydrocarbon plasticizers. For the first time, the change in Gibbs free energy, enthalpy (interaction energy), and mixing and disordering entropy was calculated based on experimental data (surface tension, average cubic diameter of MWCNTs, molecular mass, etc.). The data were compared with the storage stability of polymer-modified binders (PMBs). It was found that mixing entropy plays a key role in forming thermodynamically stable dispersions, while the contribution of disordering entropy is minimal. High dispersion enthalpy of MWCNTs can reduce dispersion stability at high concentrations despite entropy growth. Systems with selective purification extracts showed the best PMB stability despite thermodynamic instability. The property changes after 3 days at 180 °C were no more than 5%. This suggests structural changes from component interactions are critical, highlighting the need for an integrated approach considering both thermodynamic and macroscopic properties.

Keywords