npj Quantum Information (Jun 2021)

Quantum simulations with multiphoton Fock states

  • T. J. Sturges,
  • T. McDermott,
  • A. Buraczewski,
  • W. R. Clements,
  • J. J. Renema,
  • S. W. Nam,
  • T. Gerrits,
  • A. Lita,
  • W. S. Kolthammer,
  • A. Eckstein,
  • I. A. Walmsley,
  • M. Stobińska

DOI
https://doi.org/10.1038/s41534-021-00427-w
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Quantum simulations are becoming an essential tool for studying complex phenomena, e.g. quantum topology, quantum information transfer and relativistic wave equations, beyond the limitations of analytical computations and experimental observations. To date, the primary resources used in proof-of-principle experiments are collections of qubits, coherent states or multiple single-particle Fock states. Here we show a quantum simulation performed using genuine higher-order Fock states, with two or more indistinguishable particles occupying the same bosonic mode. This was implemented by interfering pairs of Fock states with up to five photons on an interferometer, and measuring the output states with photon-number-resolving detectors. Already this resource-efficient demonstration reveals topological matter, simulates non-linear systems and elucidates a perfect quantum transfer mechanism which can be used to transport Majorana fermions.