Advanced Energy & Sustainability Research (Sep 2023)

Contact/Noncontact‐Mode Thermoelectric Characteristics of Polytriarylamine/Lewis Acid Complex Films in Horizontal Device Geometry

  • Woongki Lee,
  • Hwajeong Kim,
  • Youngkyoo Kim

DOI
https://doi.org/10.1002/aesr.202300009
Journal volume & issue
Vol. 4, no. 9
pp. n/a – n/a

Abstract

Read online

Herein, the thermoelectric characteristics of polytriarylamine‐Lewis acid complex films were investigated by employing a horizontal device structure. Poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)benzidine] (PolyTPD) is doped with tris(pentafluorophenyl)borane (BCF) via Lewis acid–base reactions by varying the BCF molar ratio (0–300 mol%). The resulting PolyTPD:BCF films are spun on glass substrates and silver electrodes are deposited leading to the horizontal type of organic thermoelectric devices (OTEDs). The OTEDs with the PolyTPD:BCF films are examined by varying temperature differences up to 45 K between two silver electrodes directly contacting hot/cold sources. Both device current and voltage are proportionally increased with the temperature difference, leading to higher powers at larger temperature differences, irrespective of BCF molar ratio. However, the highest current is achieved at 50 mol% owing to the highest electrical conductivity, even though the device voltage is slightly lower at 50 than 20 mol%. The origin of high electrical conductivity is assigned to the formation of radical cations in PolyTPD chains by BCF doping, which is influenced by the reaction time. The device current can be also generated by the illumination of IR radiation (noncontact mode) that is away from the OTEDs with the PolyTPD:BCF films.

Keywords