International Journal of Advanced Design and Manufacturing Technology (Jan 2025)

A Comparative FEM Analysis of a Substituted 3D-Printed U-Joint with PLA and ABS Materials

  • Mohammad Sajjad Mahdieh,
  • Golshid Fathinasab

Journal volume & issue
Vol. 17, no. 4
pp. 11 – 18

Abstract

Read online

Currently, manufacturing and repairing industrial equipment in a short time with the least cost has been a challenge. Furthermore, the idle time of the industrial machines due to their failed parts imposes high losses on the production process. Applying 3D printers to manufacture damaged parts quickly is a promising measure to tackle the abovementioned problem. This article is an efficient approach to the manufacture and analysis of a universal joint (U-joint) as the case study with Polylactic acid (PLA) and Acrylonitrile butadiene styrene (ABS) through the 3D printing process. U-joints are widely used as a coupling in industrial equipment to alleviate the misalignment of input and output shafts in many gearboxes and pumps. Because of undergoing fatigue loads, the failure occurrence in U-joints is very probable. Therefore, an attempt is made here to substitute this part with a 3D-printed one. Besides, comparing and evaluating the results of FEM simulations for the sake of selecting the most suitable material for the U-joint are done.  According to the FEM results, the maximum stress imposed on the U-joint was obtained 28.8MPa which is lower than the yield strength of both PLA and ABS materials; however, the results show that PLA has higher fatigue strength than ABS in this case. 

Keywords