Journal of Sensor and Actuator Networks (Oct 2014)
Towards Sensor-Actuator Coupling in an Automated Order Picking System by Detecting Sealed Seams on Pouch Packed Goods
Abstract
In this paper, a novel concept of coupling the actuators of an automated order picking system for pouch packed goods with an embedded CCD camera sensor by means of image processing and machine learning is presented. The picking system mechanically combines the conveyance and singularization of a still-connected chain of pouch packed goods in a single machinery. The proposed algorithms perform a per-frame processing of the captured images in real-time to detect the sealed seams of the ongoing pouches. The detections are used to deduce cutting decisions in order to control the system’s actuators, namely the drive pulley for conveyance and the cutting device for the separation. Within this context, two controlling strategies are presented as well which specify the interaction of the sensor and the actuators. The detection is carried out by two different marker detection strategies: enhanced Template Matching as a heuristic and Support Vector Machines as a supervised classification based concept. Depending on the employed marker, detection rates of almost 100% with a calculation time of less than 40 ms are possible. From a logistic point of view, sealed seam widths of 20 mm prove feasible.
Keywords