Frontiers in Bioinformatics (Dec 2023)

Segmentation of cellular ultrastructures on sparsely labeled 3D electron microscopy images using deep learning

  • Archana Machireddy,
  • Guillaume Thibault,
  • Guillaume Thibault,
  • Kevin G. Loftis,
  • Kevin Stoltz,
  • Cecilia E. Bueno,
  • Hannah R. Smith,
  • Jessica L. Riesterer,
  • Jessica L. Riesterer,
  • Joe W. Gray,
  • Joe W. Gray,
  • Xubo Song,
  • Xubo Song,
  • Xubo Song,
  • Xubo Song

DOI
https://doi.org/10.3389/fbinf.2023.1308708
Journal volume & issue
Vol. 3

Abstract

Read online

Focused ion beam-scanning electron microscopy (FIB-SEM) images can provide a detailed view of the cellular ultrastructure of tumor cells. A deeper understanding of their organization and interactions can shed light on cancer mechanisms and progression. However, the bottleneck in the analysis is the delineation of the cellular structures to enable quantitative measurements and analysis. We mitigated this limitation using deep learning to segment cells and subcellular ultrastructure in 3D FIB-SEM images of tumor biopsies obtained from patients with metastatic breast and pancreatic cancers. The ultrastructures, such as nuclei, nucleoli, mitochondria, endosomes, and lysosomes, are relatively better defined than their surroundings and can be segmented with high accuracy using a neural network trained with sparse manual labels. Cell segmentation, on the other hand, is much more challenging due to the lack of clear boundaries separating cells in the tissue. We adopted a multi-pronged approach combining detection, boundary propagation, and tracking for cell segmentation. Specifically, a neural network was employed to detect the intracellular space; optical flow was used to propagate cell boundaries across the z-stack from the nearest ground truth image in order to facilitate the separation of individual cells; finally, the filopodium-like protrusions were tracked to the main cells by calculating the intersection over union measure for all regions detected in consecutive images along z-stack and connecting regions with maximum overlap. The proposed cell segmentation methodology resulted in an average Dice score of 0.93. For nuclei, nucleoli, and mitochondria, the segmentation achieved Dice scores of 0.99, 0.98, and 0.86, respectively. The segmentation of FIB-SEM images will enable interpretative rendering and provide quantitative image features to be associated with relevant clinical variables.

Keywords