Microbiology Spectrum (Jun 2024)

EnsembleSeq: a workflow towards real-time, rapid, and simultaneous multi-kingdom-amplicon sequencing for holistic and resource-effective microbiome research at scale

  • Sunil Nagpal,
  • Sharmila S. Mande,
  • Harish Hooda,
  • Usha Dutta,
  • Bhupesh Taneja

DOI
https://doi.org/10.1128/spectrum.04150-23
Journal volume & issue
Vol. 12, no. 6

Abstract

Read online

ABSTRACT Bacterial communities are often concomitantly present with numerous microorganisms in the human body and other natural environments. Amplicon-based microbiome studies have generally paid skewed attention, that too at a rather shallow genus level resolution, to the highly abundant bacteriome, with interest now forking toward the other microorganisms, particularly fungi. Given the generally sparse abundance of other microbes in the total microbiome, simultaneous sequencing of amplicons targeting multiple microbial kingdoms could be possible even with full multiplexing. Guiding studies are currently needed for performing and monitoring multi-kingdom-amplicon sequencing and data capture at scale. Aiming to address these gaps, amplification of full-length bacterial 16S rRNA gene and entire fungal internal-transcribed spacer (ITS) region was performed for human saliva samples (n = 96, including negative and positive controls). Combined amplicon DNA libraries were prepared for nanopore sequencing using a major fraction of 16S molecules and a minor fraction of ITS amplicons. Sequencing was performed in a single run of an R10.4.1 flow cell employing the latest V14 chemistry. An approach for real-time monitoring of the species saturation using dynamic rarefaction was designed as a guiding determinant of optimal run time. Real-time saturation monitoring for both bacterial and fungal species enabled the completion of sequencing within 30 hours, utilizing less than 60% of the total nanopores. Approximately 5 million high quality (HQ) taxonomically assigned reads were generated (~4.2 million bacterial and 0.7 million fungal), providing a wider (beyond bacteriome) snapshot of human oral microbiota at species-level resolution. Among the more than 400 bacterial and 240 fungal species identified in the studied samples, the species of Streptococcus (e.g., Streptococcus mitis and Streptococcus oralis) and Candida (e.g., Candida albicans and Candida tropicalis) were observed to be the dominating microbes in the oral cavity, respectively. This conformed well with the previous reports of the human oral microbiota. EnsembleSeq provides a proof-of-concept toward the identification of both fungal and bacterial species simultaneously in a single fully multiplexed nanopore sequencing run in a time- and resource-effective manner. Details of this workflow, along with the associated codebase, are provided to enable large-scale application for a holistic species-level microbiome study.IMPORTANCEHuman microbiome is a sum total of a variety of microbial genomes (including bacteria, fungi, protists, viruses, etc.) present in and on the human body. Yet, a majority of amplicon-based microbiome studies have largely remained skewed toward bacteriome as an assumed proxy of the total microbiome, primarily at a shallow genus level. Cost, time, effort, data quality/management, and importantly lack of guiding studies often limit progress in the direction of moving beyond bacteriome. Here, EnsembleSeq presents a proof-of-concept toward concomitantly capturing multiple-kingdoms of microorganisms (bacteriome and mycobiome) in a fully multiplexed (96-sample) single run of long-read amplicon sequencing. In addition, the workflow captures dynamic tracking of species-level saturation in a time- and resource-effective manner.

Keywords