Journal of Synchrotron Radiation (Nov 2023)

Closing the loop: autonomous experiments enabled by machine-learning-based online data analysis in synchrotron beamline environments

  • Linus Pithan,
  • Vladimir Starostin,
  • David Mareček,
  • Lukas Petersdorf,
  • Constantin Völter,
  • Valentin Munteanu,
  • Maciej Jankowski,
  • Oleg Konovalov,
  • Alexander Gerlach,
  • Alexander Hinderhofer,
  • Bridget Murphy,
  • Stefan Kowarik,
  • Frank Schreiber

DOI
https://doi.org/10.1107/S160057752300749X
Journal volume & issue
Vol. 30, no. 6
pp. 1064 – 1075

Abstract

Read online

Recently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop feedback system, enabling monitoring and real-time decision-making based on online data analysis. In this study, the incorporation of a combined one-dimensional convolutional neural network (CNN) and multilayer perceptron that is trained to extract physical thin-film parameters (thickness, density, roughness) and capable of taking into account prior knowledge is described. ML-based online analysis results are processed in a closed-loop workflow for X-ray reflectometry (XRR), using the growth of organic thin films as an example. Our focus lies on the beamline integration of ML-based online data analysis and closed-loop feedback. Our data demonstrate the accuracy and robustness of ML methods for analyzing XRR curves and Bragg reflections and its autonomous control over a vacuum deposition setup.

Keywords