Pharmaceutics (Feb 2019)

Light-Triggered Cellular Delivery of Oligonucleotides

  • Leena-Stiina Kontturi,
  • Joep van den Dikkenberg,
  • Arto Urtti,
  • Wim E. Hennink,
  • Enrico Mastrobattista

DOI
https://doi.org/10.3390/pharmaceutics11020090
Journal volume & issue
Vol. 11, no. 2
p. 90

Abstract

Read online

The major challenge in the therapeutic applicability of oligonucleotide-based drugs is the development of efficient and safe delivery systems. The carriers should be non-toxic and stable in vivo, but interact with the target cells and release the loaded oligonucleotides intracellularly. We approached this challenge by developing a light-triggered liposomal delivery system for oligonucleotides based on a non-cationic and thermosensitive liposome with indocyanine green (ICG) as photosensitizer. The liposomes had efficient release properties, as 90% of the encapsulated oligonucleotides were released after 1-minute light exposure. Cell studies using an enhanced green fluorescent protein (EGFP)-based splicing assay with HeLa cells showed light-activated transfection with up to 70%⁻80% efficacy. Moreover, free ICG and oligonucleotides in solution transfected cells upon light induction with similar efficacy as the liposomal system. The light-triggered delivery induced moderate cytotoxicity (25%⁻35% reduction in cell viability) 1⁻2 days after transfection, but the cell growth returned to control levels in 4 days. In conclusion, the ICG-based light-triggered delivery is a promising method for oligonucleotides, and it can be used as a platform for further optimization and development.

Keywords