Applied Sciences (Jul 2022)

MP-GCN: A Phishing Nodes Detection Approach via Graph Convolution Network for Ethereum

  • Tong Yu,
  • Xiaming Chen,
  • Zhuo Xu,
  • Jianlong Xu

DOI
https://doi.org/10.3390/app12147294
Journal volume & issue
Vol. 12, no. 14
p. 7294

Abstract

Read online

Blockchain is making a big impact in various applications, but it is also attracting a variety of cybercrimes. In blockchain, phishing transfers the victim’s virtual currency to make huge profits through fraud, which poses a threat to the blockchain ecosystem. To avoid greater losses, Ethereum, one of the blockchain platforms, can provide information to detect phishing fraud. In this study, to effectively detect phishing nodes, we propose a phishing node detection approach as message passing based graph convolution network. We first form a transaction network through the transaction records of Ethereum and then extract the information of nodes effectively via message passing. Finally, we use a graph convolution network to classify the normal and phishing nodes. Experiments show that our method is effective and superior to other existing methods.

Keywords