Topological Algebra and its Applications (Mar 2020)
On uniformly fully inert subgroups of abelian groups
Abstract
If H is a subgroup of an abelian group G and φ ∈ End(G), H is called φ-inert (and φ is H-inertial) if φ(H) ∩ H has finite index in the image φ(H). The notion of φ-inert subgroup arose and was investigated in a relevant way in the study of the so called intrinsic entropy of an endomorphism φ, while inertial endo-morphisms (these are endomorphisms that are H-inertial for every subgroup H) were intensively studied by Rinauro and the first named author.
Keywords