EPJ Web of Conferences (Jan 2021)

EFFECT OF ENERGY DEPOSITION MODELLING IN COUPLED STEADY STATE MONTE CARLO NEUTRONICS/THERMAL HYDRAULICS CALCULATIONS

  • Tuominen Riku,
  • Valtavirta Ville,
  • García Manuel,
  • Ferraro Diego,
  • Leppänen Jaakko

DOI
https://doi.org/10.1051/epjconf/202124706001
Journal volume & issue
Vol. 247
p. 06001

Abstract

Read online

In coupled calculations with Monte Carlo neutronics and thermal hydraulics the Monte Carlo code is used to produce a power distribution which in practice means tallying the energy deposition. Usually the energy deposition is estimated by making a simple approximation that energy is deposited only in fission reactions. The goal of this work is to study how the accuracy of energy deposition modelling affects the results of steady state coupled calculations. For this task an internal coupling between Monte Carlo transport code Serpent 2 and subchannel code SUBCHANFLOW is used along with a recently implemented energy deposition treatment of Serpent 2. The new treatment offers four energy deposition modes each of which offers a different combination of accuracy and required computational time. As a test case, a 3D PWR fuel assembly is modelled with different energy deposition modes. The resulting effective multiplication factors are within 30 pcm. Differences of up to 100K are observed in the fuel temperatures.

Keywords