Applied Sciences (Nov 2018)

Inorganic Pseudo Ion Exchange Membranes—Concepts and Preliminary Experiments

  • Joost Veerman,
  • Damnearn Kunteng

DOI
https://doi.org/10.3390/app8112142
Journal volume & issue
Vol. 8, no. 11
p. 2142

Abstract

Read online

Reverse electrodialysis (RED) is a method to produce electricity from the reversible mixing of two salt solutions with different concentrations. RED was first employed for energy generation using sea and river water. New fields of application are energy storage and heat-to-power conversion. In energy storage applications, a stack operates in ED mode during charge and in RED mode during discharge. In a heat-to-power system, the RED stack produces electricity and the outgoing solutions are returned to their original concentrations in a heat-driven regenerator. In both new applications, the salt solutions are circulated and there is a free choice of the combination of salt and membranes for optimal performance. However, classical polymer-based membranes have some disadvantages: they are less suited for operation at higher temperatures, have reduced permselectivity at higher concentrations, and are rather permeable to water, causing an imbalance of the feed waters. We developed a new concept of pseudo-membrane (PM): a metal sheet (sometimes covered with an insoluble salt) on which opposite electrochemical reactions occur at each side of the metal surface. Because a PM is dissolving at one side and growing at the other side during operation, the current should be inverted periodically. We tested a zinc sheet as a pseudo cation exchange membrane for Zn2+ ions and a silver chloride⁻covered silver plate as a pseudo anion exchange membrane for Cl− ions in three steps. First, a stack was built with Ag/AgCl membranes in combination with normal cation exchange membranes and operated with NaCl solutions. The next stack was based on Zn membranes together with normal anion exchange membranes. This stack was fed with ZnCl2 solutions. Finally, we tested a stack with zinc and Ag/AgCl pseudo-membranes with a ZnCl2 solution. The latter RED system worked; however, after standing for one night, the stack did not function and appeared to be damaged by redox reactions. This failure was the basis for general considerations about the possibilities of ED and RED hybrid stacks, consisting of a combination of classical and pseudo ion exchange membranes. Finally, we consider the possibility of using intercalation electrodes as a pseudo-membrane.

Keywords