Nature Communications (Dec 2021)

A deep learning framework identifies dimensional representations of Alzheimer’s Disease from brain structure

  • Zhijian Yang,
  • Ilya M. Nasrallah,
  • Haochang Shou,
  • Junhao Wen,
  • Jimit Doshi,
  • Mohamad Habes,
  • Guray Erus,
  • Ahmed Abdulkadir,
  • Susan M. Resnick,
  • Marilyn S. Albert,
  • Paul Maruff,
  • Jurgen Fripp,
  • John C. Morris,
  • David A. Wolk,
  • Christos Davatzikos,
  • iSTAGING Consortium,
  • Baltimore Longitudinal Study of Aging (BLSA),
  • Alzheimer’s Disease Neuroimaging Initiative (ADNI)

DOI
https://doi.org/10.1038/s41467-021-26703-z
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 15

Abstract

Read online

Alzheimer’s disease is heterogeneous in its neuroimaging and clinical phenotypes. Here the authors present a semi-supervised deep learning method, Smile-GAN, to show four neurodegenerative patterns and two progression pathways providing prognostic and clinical information.