European Physical Journal C: Particles and Fields (Dec 2021)

Revisiting dynamics of interacting quintessence

  • Patrocinio Pérez,
  • Ulises Nucamendi,
  • Roberto De Arcia

DOI
https://doi.org/10.1140/epjc/s10052-021-09857-4
Journal volume & issue
Vol. 81, no. 12
pp. 1 – 16

Abstract

Read online

Abstract We apply the tools of the dynamical system theory in order to revisit and uncover the structure of a nongravitational interaction between pressureless dark matter and dark energy described by a scalar field $$\phi $$ ϕ . For a coupling function $$Q = -(\alpha d\rho _m/dt + \beta d\rho _\phi /dt )$$ Q = - ( α d ρ m / d t + β d ρ ϕ / d t ) , where t is the cosmic time, we have found that it can be rewritten in the form $$Q = 3H (\alpha \rho _m + \beta (d\phi /dt)^2 )/(1-\alpha +\beta )$$ Q = 3 H ( α ρ m + β ( d ϕ / d t ) 2 ) / ( 1 - α + β ) , so that its dependence on the dark matter density and on the kinetic term of the scalar field is linear and proportional to the Hubble parameter. We analyze the scenarios $$\alpha =0$$ α = 0 , $$\alpha = \beta $$ α = β and $$\alpha = -\beta $$ α = - β , separately and in order to describe the cosmological evolution we have calculated various observables. A notable result of this work is that, unlike for the noninteracting scalar field with exponential potential where five critical points appear, in the case studied here, with the exception of the matter dominated solution, the remaining singular points are transformed into scaling solutions enriching the phase space. It is shown that for $$\alpha \ne 0$$ α ≠ 0 , a separatrix arises modifying prominently the structure of the phase space. This represents a novel feature no mentioned before in the literature.