Frontiers in Aging Neuroscience (Mar 2018)

Brain Aging and APOE ε4 Interact to Reveal Potential Neuronal Compensation in Healthy Older Adults

  • Elisa Scheller,
  • Elisa Scheller,
  • Lena V. Schumacher,
  • Lena V. Schumacher,
  • Lena V. Schumacher,
  • Jessica Peter,
  • Jessica Peter,
  • Jacob Lahr,
  • Jacob Lahr,
  • Julius Wehrle,
  • Julius Wehrle,
  • Julius Wehrle,
  • Julius Wehrle,
  • Christoph P. Kaller,
  • Christoph P. Kaller,
  • Christoph P. Kaller,
  • Christian Gaser,
  • Christian Gaser,
  • Stefan Klöppel,
  • Stefan Klöppel,
  • Stefan Klöppel

DOI
https://doi.org/10.3389/fnagi.2018.00074
Journal volume & issue
Vol. 10

Abstract

Read online

Compensation implies the recruitment of additional neuronal resources to prevent the detrimental effect of age-related neuronal decline on cognition. Recently suggested statistical models comprise behavioral performance, brain activation, and measures related to aging- or disease-specific pathological burden to characterize compensation. Higher chronological age as well as the APOE ε4 allele are risk factors for Alzheimer's disease. A more biological approach to characterize aging compared with chronological age is the brain age gap estimation (BrainAGE), taking into account structural brain characteristics. We utilized this estimate in an fMRI experiment together with APOE variant as measures related to pathological burden and aimed at identifying compensatory regions during working memory (WM) processing in a group of 34 healthy older adults. According to published compensation criteria, better performance along with increased brain activation would indicate successful compensation. We examined the moderating effects of BrainAGE on the relationship between task performance and brain activation in prefrontal cortex, as previous studies suggest predominantly frontal compensatory activation. Then we statistically compared them to the effects of chronological age (CA) tested in a previous study. Moreover, we examined the effects of adding APOE variant as a further moderator. Herewith, we strived to uncover neuronal compensation in healthy older adults at risk for neurodegenerative disease. Higher BrainAGE alone was not associated with an increased recruitment in prefrontal cortex. When adding APOE variant as a second moderator, we found an interaction of BrainAGE and APOE variant, such that ε4 carriers recruited right inferior frontal gyrus with higher BrainAGE to maintain WM performance, thus showing a pattern compatible with successful neuronal compensation. Exploratory analyses yielded similar patterns in left inferior and bilateral middle frontal gyrus. These results contrast those from a previous study, where we found no indication of compensation in prefrontal cortex in ε4 carriers with increasing CA. We conclude that BrainAGE together with APOE variant can help to reveal potential neuronal compensation in healthy older adults. Previous results on neuronal compensation in frontal areas corroborate our findings. Compensatory brain regions could be targeted in affected individuals by training or stimulation protocols to maintain cognitive functioning as long as possible.

Keywords