Biomedicine & Pharmacotherapy (Oct 2024)

Seno-antigen-pulsed dendritic cell vaccine induce anti-aging immunity to improve adipose tissue senescence and metabolic abnormalities

  • Yin Cao,
  • Xiaoxue Du,
  • Jiahong Yu,
  • Ying Wang,
  • Xinliang Jin,
  • Baijian Gu,
  • Qiliang Yin

Journal volume & issue
Vol. 179
p. 117433

Abstract

Read online

Anti-aging immunity induced by vaccines was recently reported to enable the elimination of senescent cells. However, the initial immune response to vaccination declines with age, and there is evidence that elderly dendritic cells (DCs) have a reduced capacity to stimulate T cells. Identification of alternative anti-aging vaccine is therefore warranted. Here, we developed a DC vaccine that delivers a cationic protein (CP) fused with the seno-antigen peptides Gpnmb (Gpnmb-CP) into DCs. The Gpnmb-CP-pulsed DC vaccine (Gpnmb-CP-DC) efficiently presented antigens and activated CD8+ T cells, leading to enhanced immune cytotoxicity and memory responses in CD8+ T cells. Thus, the targeted anti-aging immunity triggered by Gpnmb-CP-DC has the ability to selectively eliminate senescent adipocytes and effectively improve age-related metabolic abnormalities in both high-fat diet (HFD)-induced young and aged mice models, as well as in natural aging mouse model. In contrast, the Gpnmb-CP protein vaccine exhibits minimal efficacy in aged mice model. Furthermore, we observed a decreased phagocytic capacity for antigens in aging DCs, accompanied by an upregulation of the immune checkpoint PDL1 expression and a noticeable decline in activated CD8+ T cell. Hence, Gpnmb-CP-DC emerges as a promising vaccine candidate, demonstrating the capacity to induce potent anti-aging immunity, mitigating adipose tissue senescence and metabolic abnormalities, while resilient to the senescent environment of the organism.

Keywords