Application of Computing as a High-Practicability and -Efficiency Auxiliary Tool in Nanodrugs Discovery
Ke Xu,
Shilin Li,
Yangkai Zhou,
Xinglong Gao,
Jie Mei,
Ying Liu
Affiliations
Ke Xu
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
Shilin Li
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
Yangkai Zhou
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
Xinglong Gao
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
Jie Mei
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
Ying Liu
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
Research and development (R&D) of nanodrugs is a long, complex and uncertain process. Since the 1960s, computing has been used as an auxiliary tool in the field of drug discovery. Many cases have proven the practicability and efficiency of computing in drug discovery. Over the past decade, computing, especially model prediction and molecular simulation, has been gradually applied to nanodrug R&D, providing substantive solutions to many problems. Computing has made important contributions to promoting data-driven decision-making and reducing failure rates and time costs in discovery and development of nanodrugs. However, there are still a few articles to examine, and it is necessary to summarize the development of the research direction. In the review, we summarize application of computing in various stages of nanodrug R&D, including physicochemical properties and biological activities prediction, pharmacokinetics analysis, toxicological assessment and other related applications. Moreover, current challenges and future perspectives of the computing methods are also discussed, with a view to help computing become a high-practicability and -efficiency auxiliary tool in nanodrugs discovery and development.