Nanomaterials (Dec 2024)

Design of a Deep Learning-Based Metalens Color Router for RGB-NIR Sensing

  • Hua Mu,
  • Yu Zhang,
  • Zhenyu Liang,
  • Haoqi Gao,
  • Haoli Xu,
  • Bingwen Wang,
  • Yangyang Wang,
  • Xing Yang

DOI
https://doi.org/10.3390/nano14231973
Journal volume & issue
Vol. 14, no. 23
p. 1973

Abstract

Read online

Metalens can achieve arbitrary light modulation by controlling the amplitude, phase, and polarization of the incident waves and have been applied across various fields. This paper presents a color router designed based on metalens, capable of effectively separating spectra from visible light to near-infrared light. Traditional design methods for meta-lenses require extensive simulations, making them time-consuming. In this study, we propose a deep learning network capable of forward prediction across a broad wavelength range, combined with a particle swarm optimization algorithm to design metalens efficiently. The simulation results align closely with theoretical predictions. The designed color router can simultaneously meet the theoretical transmission phase of the target spectra, specifically for red, green, blue, and near-infrared light, and focus them into designated areas. Notably, the optical efficiency of this design reaches 40%, significantly surpassing the efficiency of traditional color filters.

Keywords