PeerJ (Aug 2023)

Genetic and morphological diversity in populations of Annona senegalensis Pers. occurring in Western (Benin) and Southern (Mozambique) Africa

  • Janine Conforte Fifonssi Donhouedé,
  • Isabel Marques,
  • Kolawolé Valère Salako,
  • Achille Ephrem Assogbadjo,
  • Natasha Ribeiro,
  • Ana IF Ribeiro-Barros

DOI
https://doi.org/10.7717/peerj.15767
Journal volume & issue
Vol. 11
p. e15767

Abstract

Read online Read online

Background Understanding morpho-genetic diversity and differentiation of species with relatively large distributions is crucial for the conservation and sustainable management of their genetic resources. The present study focused on Annona senegalensis Pers., an important multipurpose wild plant, distributed exclusively in natural ecosystems but facing several threats. The study assessed the genetic and morphological diversity, structure, and differentiation of the species in populations from Western (Benin) and Southern (Mozambique) Africa. The material was evaluated to ascertain the environmental (climatic) determinants of the variation within this species. Methods Four sub-populations comprised of 154 individuals were phenotyped based on nineteen plant, fruit, and leaf morphological traits and further genotyped using ten polymorphic nuclear microsatellite (nSSR) markers. Results The results indicated strong differences in plant, fruit, and leaf morphological traits between Western and Southern populations. Furthermore, the studied populations were characterized by high genetic diversity, with an average genetic diversity index of 1.02. Western populations showed higher heterozygosity values (0.61–0.71) than Southern populations (0.41–0.49). Western and Southern populations were clearly differentiated into two different genetic groups, with further genetic subdivisions reflecting four sub-populations. Genetic variation between regions (populations) was higher (69.1%) than among (21.3%) and within (9.6%) sub-populations. Four distinct morphological clusters were obtained, which were strongly associated with the four genetic groups representing each sub-population. Climate, mainly precipitation and temperature indexes, explained the relatively higher variation found in morphological traits from Western (40.47%) in relation to Southern (27.98%) populations. Our study suggests that both environmental and genetic dynamics play an important role in the development of morphological variation in A. senegalensis.

Keywords