World Journal of Surgical Oncology (Jul 2024)
Histogenetic insights and genetic landscape of fibromatosis-like undifferentiated gastric carcinoma: a focused study
Abstract
Abstract Background The aim of this study was to elucidate the histogenesis and genetic underpinnings of fibromatosis-like undifferentiated gastric carcinoma (FLUGC), a rare pathological entity. Method Through a detailed analysis of seven cases, including histopathological evaluation, CTNNB1 gene mutation screening, human epidermal growth factor receptor 2 (HER2) protein level quantification, and HER2 gene amplification assessment to identify the pathological and molecular characteristics of FLUGC. Results Of the seven patients in this study, five were male and two were female (age: 39–73 years). Four patients presented with lesions in the gastric antrum and three had lesions in the lateral curvature of the stomach. Histopathologically, over 90% of the tumor consisted of aggressive fibromatosis-like tissue, including proliferating spindle fibroblasts and myofibroblasts and varying amounts of collagenous fibrous tissues. Undifferentiated cancer cells, accounting for less than 10%, were dispersed among the aggressive fibromatosis-like tissues. These cells were characterized by their small size and were relatively sparse without glandular ducts or nested mass-like structures. Immunophenotyping results showed positive expression of CKpan, CDX2, villin, and p53 in undifferentiated cancer cells; positive expression of vimentin in aggressive fibromatosis-like tissue; positive cytoplasmic expression of β-catenin; and focal cytoplasmic positive expression of smooth muscle actin (SMA). Genetic analysis did not reveal any mutations in the CTNNB1 gene test, nor was there amplification in the HER2 gene fluorescence in situ hybridization (FISH) test. Additionally, the Epstein-Barr encoding region (EBER) of in situ hybridization was negative; and the mismatch repair (MMR) protein was positive. Programmed cell death-1 (PD-1) was < 1–5%; programmed cell death ligand 1 (PD-L1): TPS = 1–4%, CPS = 3–8. Conclusion The study highlights the significance of CTNNB1, HER2, EBER, and MMR as pivotal genetic markers in FLUGC, underscoring their relevance for diagnosis and clinical management. The rarity and distinct pathological features of FLUGC emphasize the importance of accurate diagnosis to prevent underdiagnosis or misdiagnosis and to raise awareness within the medical community.
Keywords