Biomath (Sep 2020)
The impact of infected T lymphocyte burst rate and viral shedding rate on optimal treatment scheduling in a human immunodeficiency virus infection
Abstract
We consider a mathematical model of human immunodeficiency virus (HIV) infection dynamics of T lymphocyte (T cell), infected T cell, and viral populations under reverse transcriptase inhibitor (RTI) andprotease inhibitor (PI) treatment. Existence, uniqueness, and characterization of optimal treatment profiles which minimize total amount of drug used, viral, and infected T cell populations, while maximizing levels of T cells are determined analytically. Numerical optimal control experiments are also performed to illustrate how burst rate of infected T cells and shedding rate of virions impact optimal treatment profiles. Finally, a sensitivity analysis is performed to detect how model input parameters contribute to output variance.
Keywords