Известия Алтайского государственного университета (Sep 2020)

Исследование численного метода решения краевой задачи для дифференциального уравнения с дробной производной по времени

  • Нурлана Бауржановна Алимбекова,
  • Досан Ракимгалиевич Байгереев,
  • Мураткан Набенович Мадияров

DOI
https://doi.org/10.14258/izvasu(2020)4-10
Journal volume & issue
no. 4(114)
pp. 64 – 69

Abstract

Read online

В настоящее время замечается повышенный интерес к проблеме численной реализации моделей многофазной фильтрации в связи с ее огромной экономической значимостью в нефтедобывающей промышленности, гидрологии и управлении ядерных отходов. В отличие от классических моделей фильтрации, модели фильтрации в сильнопористых трещиноватых пластах с фрактальной геометрией скважин изучены недостаточно полно. Решение данной задачи сводится к решению системы дифференциальных уравнений с дробными производными. Построена конечно-разностная схема для решения начально-краевой задачи для уравнения конвекции-диффузии с производной дробного порядка по времени в смысле Капуто-Фабрицио. Получены априорные оценки для решения разностной задачи в предположении существования решения задачи в классе достаточно гладких функций, которые доказывают единственность решения и устойчивость разностной схемы. Показана сходимость решения разностной задачи к решению исходной дифференциальной задачи со вторым порядком по временной и пространственной переменным. Представлены результаты вычислительных экспериментов, подтверждающие достоверность теоретического анализа.

Keywords