Aerospace (Dec 2022)
An AEFA-Based Optimum Design of Fuzzy PID Controller for Attitude Control Flywheel with BLDC Motor
Abstract
A new method for optimizing the fuzzy PID controller, based on an artificial electric field algorithm (AEFA), is proposed in this paper, aiming at improving the stability indicator of the Brushless DC (BLDC) motor for the small satellite attitude control flywheel. The BLDC motor is the basic part of the small satellite attitude control flywheel. In order to accurately control the attitude of the small satellite, a good motor control system is very important. Firstly, the mathematical model of the BLDC motor is established and the BLDC motor speed control system using traditional PID control is designed. Secondly, considering that the small satellite speed control system is a nonlinear system, a fuzzy PID control is designed to solve the shortcomings of the fixed parameters of the traditional PID control. Finally, we find that the control accuracy of the fuzzy PID control will change with the range of the input. Therefore, we introduce the AEFA to optimize fuzzy PID to achieve high-precision attitude control of small satellites. By simulating the BLDC motor system, the proposed fuzzy PID controller based on AEFA is compared with the traditional PID controller and the fuzzy PID controller. Results from different controllers show that the proposed control method could effectively reduce steady state error. In addition, the proposed fuzzy PID–AEFA controller has the better anti-jamming capability.
Keywords