Frontiers in Psychology (Jan 2020)

Assessing Risk Among Correctional Community Probation Populations: Predicting Reoffense With Mobile Neurocognitive Assessment Software

  • Gabe Haarsma,
  • Sasha Davenport,
  • Devonte C. White,
  • Devonte C. White,
  • Pablo A. Ormachea,
  • Erin Sheena,
  • David M. Eagleman,
  • David M. Eagleman

DOI
https://doi.org/10.3389/fpsyg.2019.02926
Journal volume & issue
Vol. 10

Abstract

Read online

We seek to address current limitations of forensic risk assessments by introducing the first mobile, self-scoring, risk assessment software that relies on neurocognitive testing to predict reoffense. This assessment, run entirely on a tablet, measures decision-making via a suite of neurocognitive tests in less than 30 minutes. The software measures several cognitive and decision-making traits of the user, including impulsivity, empathy, aggression, and several other traits linked to reoffending. Our analysis measured whether this assessment successfully predicted recidivism by testing probationers in a large urban city (Houston, TX, United States) from 2017 to 2019. To determine predictive validity, we used machine learning to yield cross-validated receiver–operator characteristics. Results gave a recidivism prediction value of 0.70, making it comparable to commonly used risk assessments. This novel approach diverges from traditional self-reporting, interview-based, and criminal-records-based approaches, and can also add a protective layer against bias, while strengthening model accuracy in predicting reoffense. In addition, subjectivity is eliminated and time-consuming administrative efforts are reduced. With continued data collection, this approach opens the possibility of identifying different levels of recidivism risk, by crime type, for any age, or gender, and seeks to steer individuals appropriately toward rehabilitative programs. Suggestions for future research directions are provided.

Keywords