Antioxidants (Sep 2024)

The Effect of Light Intensity during Cultivation and Postharvest Storage on Mustard and Kale Microgreen Quality

  • Ieva Gudžinskaitė,
  • Kristina Laužikė,
  • Audrius Pukalskas,
  • Giedrė Samuolienė

DOI
https://doi.org/10.3390/antiox13091075
Journal volume & issue
Vol. 13, no. 9
p. 1075

Abstract

Read online

Microgreens are vegetable greens that are harvested early while they are still immature and have just developed cotyledons. One of the disadvantages and a challenge in production is that they exhibit a short shelf life and may be damaged easily. In seeking to prolong the shelf life, some pre- and postharvest interventions have been investigated. Here, kale and mustard microgreens were grown in a controlled-environment walk-in chamber at +21/17 °C, with ~65% relative air humidity, while maintaining the spectral composition of deep red 61%, blue 20%, white 15%, and far red 4% (150, 200, and 250 µmol m−2 s−1 photosynthetic photon flux density (PPFD)). Both microgreens seemed to exhibit specific and species-dependent responses. Higher PPFD during growth and storage in light conditions resulted in increased contents of TPC in both microgreens on D5. Additionally, 150 and 250 PPFD irradiation affected the α-tocopherol content by increasing it during postharvest storage in kale. On D0 150 for kale and 200 PPFD for mustard microgreens, β-carotene content increased. D5 for kale showed insignificant differences, while mustard responded with the highest β-carotene content, under 150 PPFD. Our findings suggest that both microgreens show beneficial outcomes when stored in light compared to dark and that mild photostress is a promising tool for nutritional value improvement and shelf-life prolongation.

Keywords