Atmosphere (Sep 2022)

Characteristics of Photochemical Reactions with VOCs Using Multivariate Statistical Techniques on Data from Photochemical Assessment Monitoring Stations

  • Edward Ming-Yang Wu,
  • Shu-Lung Kuo

DOI
https://doi.org/10.3390/atmos13091489
Journal volume & issue
Vol. 13, no. 9
p. 1489

Abstract

Read online

This study assesses the concentrations of the 54 ozone precursors (all being volatile organic compounds (VOCs)) detected at the four photochemical assessment monitoring stations that are part of the air quality monitoring network in the Kaohsiung-Pingtung area in Taiwan. Factor and cluster analyses of the multivariate statistical analysis are performed to explore the interrelationship among the 10 VOCs of relatively higher concentrations selected from the 54 ozone precursors to identify significant factors affecting ozone pollution levels in the study area. Moreover, the multivariate statistical analysis can faithfully reflect why the study area has been affected by photochemical pollution. First, results of the factor analysis suggest that the factors affecting how photochemical reactions occur in the study area can be divided into the following: “pollution from mobile sources”, “pollution from stationary sources”, and “pollution from energy sources”. Among them, mobile sources have the greatest impact on photochemical pollution levels. Second, the impacts of photochemical pollution on air quality in the study area can be classified into four clusters via cluster analysis. Each cluster represents how the 10 VOCs affect air quality, with different characteristics, and how they contribute to photochemical pollution in the study area. If there are more types and samples of photochemical pollutants when performing a multivariate statistical analysis, the analysis results will be more stable. This study adopts data on VOC monitoring over a period of nearly two years, which can effectively improve the validity and reliability of the factor analysis results, while helping environmental agencies review the effectiveness of air quality management in the future and serving as reference for the effectiveness of reducing photochemical pollution in the atmosphere.

Keywords