In Situ DRIFTS-MS Methanol Adsorption Study onto Supported NiSn Nanoparticles: Mechanistic Implications in Methanol Steam Reforming
Luis F. Bobadilla,
Lola Azancot,
Svetlana Ivanova,
Juan J. Delgado,
Francisca Romero-Sarria,
Miguel A. Centeno,
Anne-Cécile Roger,
José A. Odriozola
Affiliations
Luis F. Bobadilla
Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 49 Américo Vespucio, 41092 Sevilla, Spain
Lola Azancot
Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 49 Américo Vespucio, 41092 Sevilla, Spain
Svetlana Ivanova
Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 49 Américo Vespucio, 41092 Sevilla, Spain
Juan J. Delgado
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real (Cádiz), Spain
Francisca Romero-Sarria
Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 49 Américo Vespucio, 41092 Sevilla, Spain
Miguel A. Centeno
Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 49 Américo Vespucio, 41092 Sevilla, Spain
Anne-Cécile Roger
Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67807 Strasbourg, France
José A. Odriozola
Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 49 Américo Vespucio, 41092 Sevilla, Spain
Methanol adsorption over both supported NiSn Nps and analogous NiSn catalyst prepared by impregnation was studied by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to gain insights into the basis of hydrogen production from methanol steam reforming. Different intermediate species such as methoxides with different geometry (bridge and monodentate) and formate species were identified after methanol adsorption and thermal desorption. It is proposed that these species are the most involved in the methanol steam reforming reaction and the major presence of metal-support interface sites in supported NiSn Nps leads to higher production of hydrogen. On the basis of these results, a plausible reaction mechanism was elucidated through the correlation between the thermal stability of these species and the evolution of the effluent gas released. In addition, it was demonstrated that DME is a secondary product generated by condensation of methoxides over the acid sites of alumina support in an acid-catalyzed reaction.