Applied Sciences (Sep 2021)
Parameter Optimization of dsRNA Splicing Evolutionary Algorithm Based Fixed-Time Obstacle-Avoidance Trajectory Planning for Space Robot
Abstract
This paper addresses a smoother fixed-time obstacle-avoidance trajectory planning based on double-stranded ribonucleic acid (dsRNA) splicing evolutionary algorithm for a dual-arm free-floating space robot, the smoothness of large joint angular velocity is improved by 15.61% on average compared with the current trajectory planning strategy based on pose feedback, and the convergence performance is improved by 76.44% compared with the existing optimal trajectory planning strategy without pose feedback. Firstly, according to the idea of pose feedback, a novel trajectory planning strategy with low joint angular velocity input is proposed to make the pose errors of the end-effector and base converge asymptotically within fixed time. Secondly, a novel evolutionary algorithm based on the gene splicing idea of dsRNA virus is proposed to optimize the parameter of the fixed-time error response function and obstacle-avoidance algorithm, which can make joint angular velocity trajectory is planned smooth. In the end, the optimized trajectory planning strategy is applied into the dual-arm space robot system so that the robotic arm can smoothly, fast and accurately complete the tracking task. The proposed novel algorithm achieved 7.56–30.40% comprehensive performance improvement over the benchmark methods, experiment and simulation verify the effectiveness of the proposed method.
Keywords