BMC Musculoskeletal Disorders (Mar 2021)
Does breaking up prolonged sitting improve cognitive functions in sedentary adults? A mapping review and hypothesis formulation on the potential physiological mechanisms
Abstract
Abstract Background Prolonged (excessive) sitting is detrimentally associated with cardiovascular, metabolic and mental health. Moreover, prolonged sitting has been associated with poor executive function, memory, attention and visuospatial skills, which are important cognitive aspects of work performance. Breaking up prolonged sitting with standing or light-intensity exercises at the workplace is recognized as a potential measure in improving cognition. However, preliminary evidence, primarily from acute laboratory experiments, has enabled formulating hypothesis on the possible mechanistic pathways. Hence, the aim of this mapping review is to gather preliminary evidence and substantiate possible physiological mechanisms underpinning the putative effects of breaking prolonged sitting on improving cognitive function among sedentary office workers. Mapping method We searched four databases to identify relevant studies that explored the effects of uninterrupted sitting on cognitive function. First, we introduce how prolonged sitting increases the risks of hyperglycemia, autonomic stability, inflammation, adverse hormonal changes and restrictions in cerebral blood flow (CBF) and alters cognitive function. Second, we elucidate the direct and indirect effects of breaking up prolonged sitting time that may prevent a decline in cognitive performance by influencing glycaemic variability, autonomic stability, hormones (brain derived neurotrophic factor, dopamine, serotonin), vascular functions, and CBF. We highlight the importance of breaking up prolonged sitting on metabolic, vascular and endocrine functions, which in turn may improve cognitive functions and eventually foster work productivity. Improved synaptic transmission or neuroplasticity due to increased brain glucose and mitochondrial metabolism, increased endothelial shear and CBF, increased brain neurotrophic factors (dopamine) and accelerated anti-inflammatory functions are some of the hypothetical mechanisms underpinning improved cognitive functions. Conclusion We postulate that improving cognitive function by breaking up prolonged sitting periods is biologically plausible with the myriad of (suggested) physiological mechanisms. Future experimental studies to ascertain the aforementioned hypothetical mechanisms and clinical trials to break sedentary behavior and improve cognitive functions in sedentary office workers are warranted.
Keywords