Antioxidants (Aug 2021)

Theoretical Study of Radical Inactivation, LOX Inhibition, and Iron Chelation: The Role of Ferulic Acid in Skin Protection against UVA Induced Oxidative Stress

  • Ana Amić,
  • Jasmina M. Dimitrić Marković,
  • Zoran Marković,
  • Dejan Milenković,
  • Žiko Milanović,
  • Marko Antonijević,
  • Denisa Mastiľák Cagardová,
  • Jaime Rodríguez-Guerra Pedregal

DOI
https://doi.org/10.3390/antiox10081303
Journal volume & issue
Vol. 10, no. 8
p. 1303

Abstract

Read online

Ferulic acid (FA) is used in skin formulations for protection against the damaging actions of the reactive oxygen species (ROS) produced by UVA radiation. Possible underlying protective mechanisms are not fully elucidated. By considering the kinetics of proton-coupled electron transfer (PCET) and radical-radical coupling (RRC) mechanisms, it appears that direct scavenging could be operative, providing that a high local concentration of FA is present at the place of •OH generation. The resulting FA phenoxyl radical, after the scavenging of a second •OH and keto-enol tautomerization of the intermediate, produces 5-hydroxyferulic acid (5OHFA). Inhibition of the lipoxygenase (LOX) enzyme, one of the enzymes that catalyse free radical production, by FA and 5OHFA were analysed. Results of molecular docking calculations indicate favourable binding interactions of FA and 5OHFA with the LOX active site. The exergonicity of chelation reactions of the catalytic Fe2+ ion with FA and 5OHFA indicate the potency of these chelators to prevent the formation of •OH radicals via Fenton-like reactions. The inhibition of the prooxidant LOX enzyme could be more relevant mechanism of skin protection against UVA induced oxidative stress than iron chelation and assumed direct scavenging of ROS.

Keywords