Traditional and Iterative Group-IV Material Batteries through Ion Migration
Xiaojun He,
Xiaoyan Wei,
Zifeng Jin,
Zhenglin Wang,
Ya’nan Yang,
Jinsheng Lv,
Nan Chen
Affiliations
Xiaojun He
Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Xiaoyan Wei
Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Zifeng Jin
Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Zhenglin Wang
Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Ya’nan Yang
Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Jinsheng Lv
Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Nan Chen
Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
In this review, we emphasize the significant potential of carbon group element-based (Group-IV) electrochemical energy devices prepared on the basis of ion migration in the realm of high-efficiency batteries. Based primarily on our group research findings, we elucidate the key advantages of traditional Group-IV materials as electrodes in ion batteries powered by metal ion migration. Subsequently, we delve into the operational principles and research progress of iterative Group-IV material moisture ion batteries, driven by ion migration through external moisture. Finally, considering the practical challenges and issues in real-world applications, we offer prospects for the development and commercialization of Group-IV materials utilizing ion migration in both conventional and next-generation battery technologies.