Animal Nutrition (Jun 2022)

Ruminal bacterial community is associated with the variations of total milk solid content in Holstein lactating cows

  • Kaizhen Liu,
  • Yangdong Zhang,
  • Guoxin Huang,
  • Nan Zheng,
  • Shengguo Zhao,
  • Jiaqi Wang

Journal volume & issue
Vol. 9
pp. 175 – 183

Abstract

Read online

Total milk solid (TMS) content directly reflects the quality of milk. Rumen bacteria ferment dietary components, the process of which generates the precursors for the synthesis of milk solid, therefore, the variation in rumen bacterial community could be associated with milk solid in dairy cows. In this study, 45 healthy mid-lactation Holstein dairy cows with the similar body weight, lactation stage, and milk yield were initially used for the selection of 10 cows with high TMS (HS) and 10 cows with low TMS (LS). All those animals were under the same feeding management, and the individual milk yield was recorded for 14 consecutive days before milk and rumen fluid were sampled. Rumen fluid was used to determine bacterial community by 16S rRNA gene sequencing technique. The HS cows had significantly greater feed intake and milk TMS, fat, protein content than LS cows (P 0.05), nor was the acetate-to-propionate ratio, pH value, ammonia nitrogen and microbial crude protein concentrations (P > 0.05). Significant differences in the relative abundances of some bacterial genera were found between HS and LS cows. Spearman’s rank correlation analysis revealed that TMS content was correlated positively with the abundances of Ruminococcaceae UCG-014, Ruminococcaceae NK4A214 group, Prevotellaceae UCG-001, Butyrivibrio 2, Prevotellaceae UCG-003, Candidatus Saccharimonas, Ruminococcus 2, Lachnospiraceae XPB1014 group, probable genus 10, Eubacterium ventriosum group, but negatively correlated with Pyramidobacte. In addition, Ruminococcaceae UCG-014, Ruminococcus 2, Ruminococcaceae UCG001, probable genus 10 and Eubacterium ventriosum group might boost the total VFA production in the rumen. In conclusion, the dry matter intake of dairy cows and some special bacteria in rumen were significantly associated with TMS content, which suggests the potential function of rumen bacteria contributing to TMS content in dairy cows.

Keywords