Automated Quantitative Image-Derived Input Function for the Estimation of Cerebral Blood Flow Using Oxygen-15-Labelled Water on a Long-Axial Field-of-View PET/CT Scanner
Thomas Lund Andersen,
Flemming Littrup Andersen,
Bryan Haddock,
Sverre Rosenbaum,
Henrik Bo Wiberg Larsson,
Ian Law,
Ulrich Lindberg
Affiliations
Thomas Lund Andersen
Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
Flemming Littrup Andersen
Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
Bryan Haddock
Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
Sverre Rosenbaum
Department of Neurology, Copenhagen University Hospital, Bispebjerg, 2400 Copenhagen, Denmark
Henrik Bo Wiberg Larsson
Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
Ian Law
Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
Ulrich Lindberg
Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
The accurate estimation of the tracer arterial blood concentration is crucial for reliable quantitative kinetic analysis in PET. In the current work, we demonstrate the automatic extraction of an image-derived input function (IDIF) from a CT AI-based aorta segmentation subsequently resliced to a dynamic PET series acquired on a Siemens Vision Quadra long-axial field of view scanner in 10 human subjects scanned with [15O]H2O. We demonstrate that the extracted IDIF is quantitative and in excellent agreement with a delay- and dispersion-corrected sampled arterial input function (AIF). Perfusion maps in the brain are calculated and compared from the IDIF and AIF, respectively, showed a high degree of correlation. The results demonstrate the possibility of defining a quantitatively correct IDIF compared with AIFs from the new-generation high-sensitivity and high-time-resolution long-axial field-of-view PET/CT scanners.